Constructible exponential functions, motivic Fourier transform and transfer principle
نویسندگان
چکیده
منابع مشابه
Constructible exponential functions, motivic Fourier transform and transfer principle
We introduce spaces of exponential constructible functions in the motivic setting for which we construct direct image functors in the absolute and relative settings. This allows us to define a motivic Fourier transformation for which we get various inversion statements. We also define spaces of motivic Schwartz-Bruhat functions on which motivic Fourier transformation induces isomorphisms. Our m...
متن کامل5 CONSTRUCTIBLE EXPONENTIAL FUNCTIONS , MOTIVIC FOURIER TRANSFORM AND TRANSFER PRINCIPLE by Raf
In our previous work [8], we laid general foundations for motivic integration of constructible functions. One of the most salient features of motivic constructible functions is that they form a class which is stable by direct image and that motivic integrals of constructible functions depending on parameters are constructible as functions of the parameters. Though motivic constructible function...
متن کاملConstructible motivic functions and motivic integration
1.1. In this paper, intended to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [23], motivic integration developed quickly and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual varieties...
متن کامل4 CONSTRUCTIBLE MOTIVIC FUNCTIONS AND MOTIVIC INTEGRATION by Raf
1.1. — In this paper, intented to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [20], motivic integration developped quite fast and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual var...
متن کاملExponential Sums as Discrete Fourier Transform with Invariant Phase Functions
We give estimates for exponential sums over finite fields in several variables. We study the case where the phase is either quadratic or more generally invariant under the action of a finite group. The bounds obtained are better than the general ones; they imply some estimates for certain sums in one variable, and for the number of solutions of the trace equation T r ( x d + vx) .--O. In an app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics
سال: 2010
ISSN: 0003-486X
DOI: 10.4007/annals.2010.171.1011